Fit Bayesian generalised (non-)linear multilevel compositional model via full Bayesian inference
Source:R/brmcoda.R
brmcoda.Rd
Fit a brm
model with multilevel ILR coordinates
Arguments
- complr
A
complr
object containing data of composition, ILR coordinates, and other variables used in the model.- formula
A object of class
formula
,brmsformula
: A symbolic description of the model to be fitted. Details of the model specification can be found inbrmsformula
.- ...
Further arguments passed to
brm
.
Value
A brmcoda
with two elements
complr
An object of class
complr
used in thebrm
model.model
An object of class
brmsfit
, which contains the posterior draws along with many other useful information about the model.
Examples
# \donttest{
if(requireNamespace("cmdstanr")){
cilr <- complr(data = mcompd, sbp = sbp,
parts = c("TST", "WAKE", "MVPA", "LPA", "SB"), idvar = "ID")
# inspects ILRs before passing to brmcoda
names(cilr$between_logratio)
names(cilr$within_logratio)
names(cilr$logratio)
# model with compositional predictor at between and within-person levels
m1 <- brmcoda(complr = cilr,
formula = Stress ~ bilr1 + bilr2 + bilr3 + bilr4 +
wilr1 + wilr2 + wilr3 + wilr4 + (1 | ID),
chain = 1, iter = 500,
backend = "cmdstanr")
# model with compositional outcome
m2 <- brmcoda(complr = cilr,
formula = mvbind(ilr1, ilr2, ilr3, ilr4) ~ Stress + Female + (1 | ID),
chain = 1, iter = 500,
backend = "cmdstanr")
}# }
#> Error: CmdStan path has not been set yet. See ?set_cmdstan_path.